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The present paper considers crisis-induced intermittency in a system composed of two coupled logistic
maps. Its purpose is to clarify a bifurcation scenario generating such intermittent behaviors that can be regarded
as a simple example of chaotic itinerancy. The intermittent dynamics appears immediately after an attractor-
merging crisis of two off-diagonal chaotic attractors in a symmetrically coupled system. The scenario for the
crisis is investigated through analyses of sequential bifurcations leading to the two chaotic attractors and
successive changes in basin structures with variation of a system parameter. The successive changes of the
basins are also characterized by variation of a dimension of a fractal basin boundary. A numerical analysis
shows that simultaneous contacts between the attractors and the fractal basin boundary bring about the crisis
and a snap-back repeller generated at the crisis produces the intermittent transitions. Furthermore, a modified
scenario for intermittent behaviors in an asymmetrically coupled system is also discussed.
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[. INTRODUCTION interior crises of two mutually symmetric off-diagonal attrac-
tors. This is called an attractor-merging crii?]. An ad-
Coupled chaotic systems show a rich variety of collectivevantage of using a two-dimensional map as a case study is
phenomena such as chaotic synchronizafibrd] and cha-  that observations of basin structures can be easier and helpful
otic itinerancy[5-7]. The importance and interest in under- for a better understanding of dynamical phenomena in
standing collective dynamics of coupled chaotic systems lidnigher-dimensional systems. With this in mind, the present
in the fact that they are often used to model a group ofaper studies the emergence of crisis-induced intermittency
interacting units such as biological networks and electronidn a simple two-dimensional model. We analyze bifurcations
circuits. The present paper considers a scenario leading tf the two off-diagonal attractors and modifications of basins
intermittent behaviors in a system composed of two coupleaf attraction, i.e., basin bifurcatiorj44] or basin metamor-
chaotic maps, aiming at better understanding chaotic itinerphoseqd15]. The noninvertible property of the model brings
ancy. about a complicated basin structure. We use some techniques
Chaaotic itinerancy has been proposed as a concept to désr analyses of chaotic dynamics and global bifurcations in
scribe a dynamical state consisting of chaotic transitionswo-dimensional noninvertible map&4,16|.
among nearly ordered behavig®. The mathematical foun- A process leading to merging of two mutually symmetric
dation of this concept has been intensively studiéd Itin- chaotic attractors has been studied in terms of basin bifurca-
erant memory dynamids8,9], or nonperiodic associative dy- tions in Ref.[14]. The attractors simultaneously contact a
namics[10], found in chaotic neural networkd1] can be fractal basin boundary17] of their basins of attraction. We
also considered as an example of chaotic itinerancy. Thearry out a similar analysis of basins as well as quantitative
mechanism of the onset of itinerant memory dynamics in aharacterization of the changes of basins with the dimension
system of four coupled chaotic neurons has been recentlgf the basin boundary in the two-dimensional model. More-
clarified in terms of global bifurcatior{8,9]. Before a global over, we discuss a modified scenario of basin bifurcations
bifurcation, four distant chaotic attractors symbolizing differ- leading to intermittent behaviors in an asymmetrically
ent memories are coexisting. A trajectory asymptotes to oneoupled system to consider the robustness of the phenomena.
of the attractors depending on the initial condition, i.e., the From another viewpoint, the attractor-merging crisis in
network recalls one of the memories. At the bifurcationthe symmetrically coupled maps can be considered as a re-
point, the unstable manifolds of the unstable periodic pointsinion of chaotic attractorsl8]. This occurs because the cri-
embedded in the attractors intersect and then a trajectosis restores the symmetry that has been broken by a pitchfork
starts irregular itinerant transitions among the four originallybifurcation of a fixed point on the diagonal. Maistrerétcal.
attracting regions. [18] have investigated two mechanisms of reunion of several
Similar transient dynamics is also found in a system ofpieces of a chaotic attractor into a one-piece chaotic attractor
two coupled logistic maps. It corresponds to a dynamicain a system of two-dimensional piecewise linear maps. A
phenomenon calledrisis-induced intermittencyl2,13. The  mechanism called aontact bifurcation of the first kinfi19]
intermittent behavior appears immediately after simultaneougives rise to a sudden change of two or more pieces of some

1539-3755/2005/71)/01621911)/$23.00 016219-1 ©2005 The American Physical Society



TANAKA, SANJUAN, AND AIHARA PHYSICAL REVIEW E 71, 016219(2005

L-1 L1
X4e '¢h ;
Lot f------z LA— - “
10: . stretch |-
X3e i eX2 :

FIG. 1. Schematic illustration of the transformatibnvith e=0 for the phase plane. The phase plane is two-dimensionally stretched, and
then folded with respect to the two axes. The critical curvaeparates the two open regio#g,where any point has no preimages ahd
where a pointX has four rank-1 preimagé><£,‘1 (i=1,2,3,4.

cyclic chaotic attractor into a larger chaotic attractor with therespect to the diagonal that is invariant under the transforma-
appearance of bursts. This type of reunion is brought abouton S;: (X,y)—(y,Xx) whereTe§;=S,oT. Therefore, if there
by a contact of chaotic pieces with a basin boundary. Iris an attracting region above the diagonal, then its symmetric
piecewise linear mapd 8], the contact occurs with a fractal counterpart necessarily exists below the diagonal, and vice
basin boundary generated through a homoclinic bifurcatioversa.
of a saddle cycle. In this case, the boundary embedsaa It is useful for understanding this simple model to con-
otic saddle i.e., a geometrically strange, invariant, nonat-sider its geometric properties. Figure 1 schematically illus-
tracting set, which is made up of an infinite number of un-trates the transformation for the phase plane in the case of
stable periodic orbits. In our case, the contact occurs with @ao coupling, i.e..e=0. It should be recalled that the single
fractal basin boundary that arises after a boundary di2§ls  logistic map consists of a pair of operations, stretch and fold,
of an attractor. A chaotic repeller, or a strange repul4di, for an interval. By the two-dimensional transformatibnthe
is embedded in the fractal basin boundary. phase plane is two-dimensionally stretched, and then folded
The organization of the paper is as follows. In Sec. Il,along the vertical axis and the horizontal axis, respectively,
some properties of the system of two symmetrically coupledas shown in Fig. 1. Since the transformed phase plane does
logistic maps are described with the critical curve, which is anot cover the whole phase plane, it is divided into two open
useful tool for understanding a basin bifurcat[dd]. In Sec.  regionsZ, (gray) and Z, (white). A point X in Z, has four
I, bifurcations of two mutually symmetric off-diagonal at- preimagesxi'l (i=1,2,3,9, while any point inZ; has no
tractors are investigated and the parameter region where theyeimages. According to the classification based on the num-
coexist is specified. In Sec. IV, basin structures are examineger of preimages, the transformatidiis a noninvertible map
with invariant manifolds of saddle cycles. In Sec. V, basinof the (Z,-Z,) type [14]. The geometric property of the
bifurcations are qualitatively investigated with the genesismodel withe=0 also gives a hint in understanding the model

changes, and destruction of a fractal basin boundary. Thesgith e+ 0. The inverse maps defined for a poi®ty) € Z,
changes in basin structures are also quantitatively charactegre given as follows:

ized using variation of a dimension of the fractal basin

boundary. In the last section, we discuss a modified scenario T h(x,y) = (9(x,y),h(x,y)), (2
leading to intermittent behaviors in a system of two asym- .
metrically coupled logistic maps with a slight mismatch of T (xy) = (9(x,y), = h(x,y)), 3
the nonlinearity parameters.
T3H (%) = (- g6 Y), —h(xy)), (4)
Il. THE MODEL AND ITS PROPERTIES TL(x,y) — (- gx,y),h(x,y)), (5)
We consider a family of transformation§ with two  \yhere
coupled logistic maps in the following form:
1 1 1
e IPEEL P ORES N RS W
Xoe1 = (L= Oy 060) + 2[00 + Fr(ym)], o) 2>\{ 1 -/
D
€ _ 1 1 1
Y1 = (1= (o) + 2 [1,00) + Fuy)], hicy) =\ o2\ 1= )= 1+ T vy
wheref, (2)=1-\7. In both equations, the second term rep- With these notatlorjs the relation betwe_en a PMand its
resents the average coupling term of the two chaotic elefank-1 preimageX;* is described asX('=T;*(X) for i

ments. This model corresponds to a two-dimensional case &1, ...,4. In a similar way, a rankpre|mage Of a poinK is
globally coupled logistic mapf21]. Equation(1) includes denoted by X_llfz .k‘T_l.2 .k(X)ETi_k%Ti_il”“°Ti_11(X)
two parametera and e corresponding to the nonlinearity of wherei;j=1, 2, 3, or 4 forj = . K, if it exists. The union
the single logistic map and the coupling strength, respecef all rankk preimages ofa poin)t( (an ared)) is indicated

tively. For all parameter values, E(L) has a symmetry with by T™(X) [TX(U)].
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The curvel (lines in this caseseparating the phase plane 2

into the two region<Z, and Z; is called acritical curve of

rank 1[14]. The critical curve is generally an image lof; 19 N

given as the locus of points where the Jacobian determinant @ OO

vanishes. Sincé_; is the union of the two axes in Eql),

i.e., L_;={(x,y)|x=0 ory=0}, the critical curve is given as 18 1

the union of the two half lines as follows: w  |P(stable)
1.7 +

L:{(x,y)‘y:1+i(x—1) x=1y=<1)
2-¢€
16 f PD,
€ P(saddle)
orx=1+-—(y-1) (x=1lys<J). (6) 15 — : : : : : :
2-€ 06 08 1 12 14 16 18 2

It should be noted that the origi®, which is the intersection A

of th_e two axes, is mapped into the e_n_d pathof the two FIG. 2. Bifurcation diagram showing how a pair of two attrac-
half lines ofL. In Secs. IV and V, the critical curve is used t0 5.5 out of the diagonal appears and develops. The gray region

analyze basin bifurcationgl4], i.e., qualitative changes in ingicates the parameter region where the two off-diagonal attractors

basin structures. coexist. The bifurcation sets are denoted as follows;, PBntrans-
verse period-doubling bifurcation d?; PR, transverse pitchfork

1. BIFURCATIONS OF THE OFF-DIAGONAL bifurcation of P; PD,, subcritical period-doubling bifurcations 6f
ATTRACTORS andR; NS, Neimark-Sacker bifurcations 6 and R; SN, saddle-

In this section, we investigate a sequence of bifurcation$0de bifurcations on the invariant circles; RPeriod-doubling bi-

leading to two mutually symmetric off-diagonal chaotic at- urcations of the four-periodic cycles. The_pha_se plots at the param-
. S eter values denoted bfg)—(h) are shown in Figs. (&)-3(h). The
tractors using Kawakami's methd@2]. The parameter re- ;4 ¢, rves BC, BB, and IC indicate basin bifurcation gete Fig.
gion where the two off-diagonal attractors coexist is speci~ ¢, details.
fied. In the following, a local bifurcation of a fixed point or a
periodic cycle on the diagonal is callédnsversef the ei- . . .
genvalue of the Jacobian matrix with absolute value 1 corre-, Figure 2 shows bifurcation sets r'ela_ted to the two off-
sponds to the eigenvector in a direction orthogonal to théjlagonal atiractors. The gray region 'T‘d'CateS t'he pa_rameter
diagonal, anchontransverséf the direction is parallel to the region where the two attractors coexist. For simplicity, we

diagonal. A chaotic attractor consisting pidistant pieces is explain the bifurcation scenario Iegdin_g to the two chaotic
called ap-periodic chaotic attractor attractors along the dashed arrow in Fig. 2, whers fixed

We consider bifurcations in the parameter spaceat 1'.9' Phase plots at thg parameter \{alugs denotéa)-y)
{(N,e)|0<N<2,1<€e<2}, because a trajectory diverges in In Fig. 2 are correspondingly ShO".V” n F|ge{aB'—3(h). .
the single logistic map ik >2 and the transformatiom is (@)= (b). When)\<0.75, there is a stable fixed poiRt
symmetric with respect to the line=1 in the parameter =(p,yp) on the diagonal, where
plane as follows. Now we write the mdpasT, . to specify

its dependence on the system parameters. Since the relation Yo =y 1+V1+4\ ®)
Ty 2-c=Si° Ty holds for all parameter values, it follows that PP 2\ '
2 _ _ 2
2= (ST (SeThd =SieSie Tiee Tie=The The stable fixed poinP changes into a saddle fixed point

(7) and a two-periodic cycl®? emerges on the diagonal through
the nontransverse period-doubling bifurcatid?D,, in Fig.

from the properties of the transformati&, i.e., To§=5; 2)

oT and S;° §;=I wherel is the 2x 2 unit matrix. Due to the
symmetry in Eq.(7), the bifurcation diagram of? in the
(N, €) plane is symmetric with respect to the liee 1. How-
ever, there is a little difference betwedy . andT, ,_. re-
garding the symmetry in the phase plane. For instance, the
is a pair of two mutually symmetric chaotic attractors when
(N,€)=(1.67,1.9, while there is a two-piece chaotic attrac-
tor when(\,e)=(1.67,0.2. If the two chaotic attractors in

(b)— (c). The saddle fixed poinP turns into a repelling

fixed point via the transverse pitchfork bifurcatioRF in

Fig. 2 at A=(2e-1)/4(1-¢€)2. The pitchfork bifurcation
enerates a pair of mutually symmetric saddle fixed points,
=(Xq,Yg) below the diagonal andR=S4(Q)=(yq,Xo)

above that, where

_—14+V1-2e+4N(1-¢)?

the former case are denoted By, and Ag, then the two Xo = , (9)
pieces in the latter case are givenAs and Ag. Neverthe- 2\ (1-¢)

less, bifurcations in both cases are essentially the same due

to the symmetry in Eq(7). Thus, we consider the parameter ,, 5

region withe>1, since coexistence of two attractors is con- Yo= Z1-v1-2e+ 1 -¢) (10)

venient for observation of a basin boundary. 2M(1-¢)

016219-3



TANAKA, SANJUAN, AND AIHARA

4=0.6

(b)

~e

A=15

b

@

(h)

A=0.8

A=L1

-1

PHYSICAL REVIEW E 71, 016219(2005

R, by the Neimark-Sacker bifurcatidiNS in Fig. 2, respec-
tively.

(e)—(f). The four-periodic cyclesA; and Az emerge
through the saddle-node bifurcatid®N in Fig. 2 on the
invariant closed curves.

(f)—(g). The four-periodic cycles\; and Az develop
into four-periodic chaotic attractors through successive
period-doubling bifurcationghe first one is denoted by RD
in Fig. 2). The transition from(e) to (g) is a typical torus-
breaking route to chad23].

(g) — (h). Each four-periodic chaotic attractor merges into
a one-piece chaotic attractor through a global bifurcation.

The sequence of bifurcations of attractors described above
is similar to that in the system of two logistic maps with
linear coupling[23,24]. In our model, the two off-diagonal
chaotic attractors suddenly merge into a larger chaotic attrac-
tor by simultaneous interior crisedC in Fig. 2. The
attractor-merging crisis gives rise to intermittent transitions
between two distant regions that are originally attracting.
Since a crisis is generally caused by a contact between an
attractor and its basin bounddr®0], it is needed for under-
standing of the attractor-merging crisis to analyze not only
bifurcations of the attractors but also changes of their basin
boundary. Thus, we focus on the formation of the basin
structure and the basin bifurcations in the next two sections.

IV. FORMATION OF BASIN BOUNDARY WITH SADDLE
CYCLES

In this section, we consider the basin structure and we
focus our attention on the immediate basins of the off-
diagonal attractors. The total basin of an attracting/sét
defined as the s@=U,-,TX(U) whereU is some attracting
neighborhood ofA, while the immediate basiD, of A is
defined as the largest connected componeri? abntaining
A [14]. The total basin of an attractdr is denoted byD(A)
and the immediate one bBpy(A). If a region belongs to
D(A), then its preimages also belongRgA).

Figure 4 shows a basin structure under the coexistence of
the three attractorsP?, Q, and R, at the parameter value
denoted by(d) in Fig. 2. The corresponding phase plot is also
shown in Fig. 8d). The total basins oP? Q, andR are
indicated by silver, light gray, and dark gray, respectively.
The white region indicates the set of initial conditions with
which a trajectory diverges to infinity. By definition, the im-
mediate basil(Q) [Dy(R)] is the connected region includ-

FIG. 3. Phase plots at different values ofwith e=1.9. The
filled circles, the triangles, and the open circles indicate stableing Q (R), which is bounded by the four solid segments. It
saddle, and repelling points, respectively. The off-diagonal attracean be seen in Fig. 4 th&ty(Q) is divided into two regions
tors are indicated b\ andAg and the other is represented Ay. Do(Q) N Z, andDy(Q) N Z, by the critical curvel.. It should

be noted thatDy(Q) NZ, has preimages whil®y(Q)NZ,

(c)—(d). The saddle off-diagonal fixed points recover has no preimages. The union of the four rank-1 preimages of
their stability through the subcritical period-doubling bifur- Do(Q) N Z4 is equivalent to the union ddy(Q) and its mirror
cation (PDg in Fig. 2). The two-periodic saddle cycle®®> imageDy(Q) in the opposite side with respect to the axis
and R?=5,(Q?) generated at the bifurcation contribute to the=0. In a similar way;T"{(Dy(R) N Z,)=Dy(R) U D{(R) where
formation of a basin boundary as described in the next sed®((R)=S4(Dy(Q)). The regions D{(Q) and D((R) are
tion. bounded by four segments with four cusp poifid], re-

(d)— (e). The invariant closed curve&, andAg are gen-  spectively. A cusp point indicates a preimage of the repelling
erated with loss of stability of the stable fixed poi@sand fixed pointP. Hence, an isolated component®fQ) [D(R)],
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FIG. 4. Basins of attraction d®? (silven, Q (light gray), andR
(dark gray where(\,€)=(1.1,1.9. The white region indicates the 021
set of initial conditions with which a trajectory diverges. The largest

connected region includin® (R) represents the immediate basin -0
Do(Q) [Do(R)]. 02}
which is a preimage oby(Q) [Dy(R)], has a boundary con- 04r
sisting of four segments with four cusp points. 06} ]
Now we explain how the immediate badiy(Q) and its . . . s
basin boundary are formed. As mentioned in Sec. lll, the 0.5 06 0.7 0.8 0.9 1 1.1
two-periodic saddle cycle®? andR? play a significant role (b) ¥
in the formation of the basin boundary. Figur@Bsshows the FIG. 5. Boundary of the immediate basiy(Q) below the di-

immediate basiDy(Q) corresponding to that shown in Fig. agonal. It is formed by the segmeRM and its preimages. The

4. The smooth segmeRM consisting of the stable invariant segment consists of stable invariant sets of a saddle cycle. The
sets of Q% is the basic element for the immediate basinsaddle cycle ia) Q? where (\,e)=(1.1,1.9 and (b) Q* where
boundary, wherd is the intersection of the invariant set and (\,e)=(1.4,1.9. The filled circles, the triangles, and the open
the critical curvel. It should be noted thaD? is very close circles indicate stable, saddle, and repelling points, respectively.
to M and located on the left-hand side bf On the other The intersections of and the immediate basin boundary are de-
hand, one of the unstable invariant set@f extends in a noted byM andK.

direction towardQ in Dy(Q) and the other towardd? in the

outside ofDe(Q). The unstable invariant set & below the P;2P52=T;1(P;'K) U T;1(P;K), (14)
diagonal also extends in a direction towaf@dsas shown in

Fig. 5. A trajectory starting from an initial condition close to whereK is the intersection of the Segmeﬁglng and L.
P departs away from it along an integral cu&s]. These Consequently, the boundary 8,(Q) is formed by the in-

integral curves can be locally approximated as the S°|Uti°n§ariant sets of the saddle cya®? and their preimages

:ﬁ the Ilr;learlied ma;ﬁ)'L_mht_he vicinity Olfkp' Jh's lea(:ﬁ t(l) With variation of the parameter values, the saddle cycle
€ repelling tongueé, which IS now Cusplike bécause the 10cqr, undergoes successive period-doubling bifurcations as

dynamics neaP is more expanding in a direction transverse g 00 in Fig. 6. Through the period-doubling bifurcation

to the diagonal than along the diagofab]. The boundary K o ok .
of Do(Q) is made up of the basic segmePM and its pre- denoted by PB, a X-periodic saddle cycl®® changes into

. . . k+1
images, where the four boundary segments are represented@d€pelling cycle and a “?!-periodic saddle cycleQ?
follows: emerges. Figure(b) shows the immediate basin boundary at

the parameter value denoted (ty in Fig. 6, where the basic
segmentPM consists of stable invariant manifolds Q.
PP, =T;%(PM) U T,X(PM), (11)  Accordingly, the smooth boundary @&fy(Q), which is made
up of PM and its preimages, still holds. Similarly, the
smooth boundary of the immediate basin holds for the
2 _ —1/pp-1 period-doubling cascade of the saddle cycles. The cascade
PPA=T (PP, (12 leads to a chaotic saddle after its accumulation. Hence, the
immediate basin boundary is made up of a chaotic saddle
o A and its preimages after the accumulation of the cascade.
Py Py =T, (PP, (13)  However, it is not possible to concludat this study level
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FIG. 6. Successive period-doubling bifurcations of saddle
cycles. The period-doubling bifurcation of a saddle cy@ék is
denoted by ) (k=1,2,3,9. The period-doubling cascade sug-
gests the existence of a chaotic sadﬂ?é. Immediate basin bound-
aries at the parameter values denoteddyand (b) are shown in
Figs. 5a) and §b).

whether the segme®M remains smooth even after the ac-
cumulation of the period-doubling cascafee p. 370 of
Ref. [14]).

V. QUALITATIVE AND QUANTITATIVE CHANGES OF
FRACTAL BASIN BOUNDARY

In this section, successive changes in basin structures are

considered a& increases along the dashed arrow in Fig. 7.

The primary three subsections deal with basin bifurcations

PHYSICAL REVIEW E 71, 016219(2005

15
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1
1
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15
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15
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including the genesis, changes, and destruction of a fractal

basin boundary. These three major changes in basin struc- FIG. 8. Basin structures before and after the boundary ct@is:
tures take place at the parameter sets denoted by BC, Bliatal basins ofs (silven), Aq (light gray), andAg (dark gray where
and IC in Fig. 7, respectively. In the last subsection, thel\,e)=(1.53,1.9; (b) fractal basin boundary separating the total
fractal dimension of the basin boundary characterizes thedeasins of Ag (light gray) and Ag (dark gray where (\,¢)

basin bifurcations.

1.93

1gp b

T

1.91

19 (a) (b)

1.88 L= . ;
1.5 1.55 1.6 1.65
A

1.76

=(1.62,1.9.

A. Genesis

We consider a genesis of a fractal basin boundary at the
parameter set of a boundary crisis denoted by BC in Fig. 7.
Before the boundary crisis, there are three coexisting attrac-
tors Ap, Ag, andAg, as shown in Fig. &). The basin struc-
ture is qualitatively the same as that in Fig. 4, though the
attractors are topologically different. Asincreases, two dis-
joint sets of the attractoA, become larger in size and their
two end points finally contact at the repelling fixed poiht
on the basin boundary. The boundary crisis leads to the dis-
appearance ofp.

The boundary crisis set is specified by considering the
dynamics in the diagonal where the model is reduced to the

FIG. 7. Phase diagram showing the parameter sets of boundagingle logistic map. At the boundary crisis, the logistic map

crisis (BC), basin bifurcation(BB), and interior crisis(IC). Phase
plots at the parameter values indicated&y-(d) are shown in Figs.
8(a), 8(b), 10(b), and 12, respectively.

exhibits merging of a two-band chaotic attractor into a one-
band chaotic attractor. From this fact, the boundary crisis
parameter valua satisfiesffb(O):xp, or
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aries of the four tongues are connected by the rank-3 preim-
ages ofP. The union of the four tongued; X(B), has four
preimages with a similar shape. If all the preimages of
T-4B) are cut out from the area that is previously the basin
of Ap, then only a set of isolated points remains. The fractal
set is the basin boundary separatD@\,) and D(Ag). Due

to the chaotic dynamics in the area, a chaotic repeller is
embedded in the fractal basin boundary.

B. Changes

After the genesis of the fractal basin boundary, there are
infinitely many preimages of the repelling fixed poPnhear
the end pointC of the critical curve. Therefore, as in-
creases, the fractal basin boundary successively contacts the
critical curveL. This implies that the basin structure succes-
sively changes through the contact bifurcations. In fact, the
fractal dimension of the basin boundary gradually decreases
with increase ofA as shown later. However, the immediate
basinsDy(Aqg) andDy(Ag) remainsimply connectefil4] for
the successive minor changes. Further increask gives
rise to a qualitative change of the immediate basins.
Figure 1Qa) shows a simply connected immediate basin
FIG. 9. Schematic illustration of the relations between the basirf Ao. It is bounded by four segments as examined in Sec.
bou_ndary an_d the critica_l curve, showi_ng a mecha_nism of the |\ The simply connected region changes into a multiply
_basm fra(_:tallzatlon. A point near the orlg(_h (bottorm) is mapped  ~gnnected one as shown in Fig.(BDat the parameter set
nto a point near the end poit of the critical curve(uppel. (@ genoted by BB in Fig. 7. In the multiply connected immedi-
Th.e cusp poinP37 beIong; to the regiod, pefore the basin frac- ate basin, some points belonging to the basimgf(dark
;allzatlon.(b) Thﬁ four Iprelmages of the reglfarehprisent asktge ray point$ intrude into the previously simply connected
four tongues whose closures are connected at the four rank-3 pr 2gion as shown in Fig. 16). The immediate basin oAg
images ofP after the basin fractalization. . .
also changes into a multiply connected one due to the sym-
metry. The qualitative change of the immediate basin results
Ao —2\5+2\,-2=0, (15  from a contact between the boundary of the immediate basin
and the critical curve..
which gives\,~1.543 68. Hence, the parameter set of the We focus on the upper-right region Bf(Aq). The rela-
boundary crisis is independent of the coupling parameter tion between the boundaify andL is illustrated in Fig. 11.
Figure 8b) shows a basin structure after the boundaryAlthough it is hard to obtain the boundaFy precisely, the
crisis of Ap. A fractal basin boundary separating the basins ofepelling property ofF implies that two neighbor points on
Ao and A appears in the region that is previously the basindifferent sides of the boundary move away from it in the
of attraction ofAp. In order to understand the basin fractal- opposite directions. Using this property, the boundaris
ization geometrically, we focus on the area near the end poiripproximately calculated as a boundary separating the two
of the two half lines ofL. Figure 9 schematically illustrates sets of points leaving in opposite directions by iteration$ of
the relations between the basin boundary and the criticas shown in Fig. 11. Before the contact, the points on the
curve L before and after the boundary crisis. The upper fig-ight-hand side ofF have no preimages sinde is distant
ure represents a neighborhood of the end p6inwvhile the ~ from F as shown in Fig. 1(B). After the contact betweeh
bottom one represents a neighborhood of the or@inlt ~ andF, there appears the regidth belonging toZ, on the
should be recalled thad is the fourfold rank-1 preimage of left-hand side oL as shown in Fig. 1(b). The regionH has
C. Before the boundary crisi, is distant from the two seg- preimages in the previously simply connected regiont If
ments of the basin boundary connectedPg as shown in had only points belonging tB(Ag), then the preimages ¢f
Fig. 9a). Since the neighborhood & belongs to the basin would look like holes[14,26]. In our case, however, the re-
of Ap, the neighborhood dd also belongs to the basin 4.  gion H includes points belonging tD(Ag) as well as those
At the boundary crisisC contacts the cusp poimgf on the belonging toD(Ag). Consequently, the preimages Idf in-
basin boundary. A contact between a critical curve and &luding both the dark and light gray points do not appear to
basin boundary is called @ontact bifurcation/14], because be holes as shown in Fig. (d).
it brings about a qualitative change in a basin structure. After Kitajima et al.[27] has proposed a method to calculate a
the contact,L intersects the two segments of the basinparameter set of a basin bifurcation. The algorithm can be
boundary, and the rank-1 preimages of the reddoappear used when a basin boundary is made up of stable invariant
near the origin as shown in Fig(l9. The four tonguelike sets of a saddle cycle. As suggested in Sec. 1V, the boundary
preimages can be clearly confirmed in Figh)8 The bound-  of Dy(Ag) consists of a chaotic saddle and its preimages at
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FIG. 11. Relation between the basin bound@&rgnd the critical
curvel in the upper-right region oDo(Ag).

) X

boundary in both sides of the diagonal result in an abrupt
FIG. 10. Immediate basins oA, before and after the basin widening of the attractors and a destruction of the basin

bifurcation:(a) simply connected where,€)=(1.66,1.9; (b) mul-  boundary. The bifurcation can be viewed as an explosion of
tiply connected wheré\,e)=(1.67,1.9; (c) enlargement of the chaotic set§28] where the attracting chaotic sets contact a
middle part of(b). repelling chaotic set embedded in the fractal basin boundary.

To roughly estimate the crisis parameter set, we prepare a

the changes of the immediate basins. Hence, the method R§OP€r region belonging . For a fixed parameter and a
not applicable to this case. To roughly estimate the parameté!mber of initial conditions in the proper region, if all tra-
set of the changes of the immediate basins, we prepare I§CIOTeS stay iq for a sufficiently long time then the pa-
proper region belonging t®y(Ag)\Aq, €.g., the right-half rameter value is regarded as that before the crisis. Otherwise,
region in Fig. 10¢). For a fixgd ararﬁetér':emd 2 number of it is regarded as the parameter value after the crisis. Using
reg 9. 1%c). par . . . this simple test, we obtain the crisis parameter set denoted by
initial conditions in the proper region, if all trajectories are

. h h lue | ded IC in Fig. 7, where it is also observed that the parameter sets
asymptotic oA, then the parameter value is regarded asjenqted by BB and IC merge at-1.91. This means that the

that before the basin bifurcation. If at least one of them is;onact occurs between the attractors and the boundary of the
asymptotic toAg, then it is regarded as the parameter valuemmediate basin that is not multiply but simply connected.
after the basin bifurcation. Using this simple test, we obtain Figure 12a) shows the chaotic attractor, which is gener-

the parameter set denoted by BB in Fig. 7. ated immediately after the attractor-merging crisis. The crisis
can be understood through the unstable invariant manifolds
C. Destruction of P. Before the crisis, two unstable manifolds Bfextend-

After the chan fthe simol nnected immediate b .ing towards the off-diagonal attractors never intersect. After
erthe change ot the simply connected Immediate basiy,q o gjs, they have infinitely many intersections. Figure

into the multiply connected one, the regiéhin Fig. 11b) 15 shows the unstable manifolds Bfimmediately after
grows in size with further increase af With the growth of = ¢ ¢risis. It can be seen that they return to the neighborhood
H, basin bifurcations successively occur due to successiVgs p. This implies that the crisis occurs wherfirst becomes
contacts betwegn the fractal 'basin boundary and the criticg| snap-back repell¢29]. An intersection of the two unstable
curve L. Accordingly, the preimages dfi approach the at- manifolds means infinitely many intersections of them.
tractor Ag, and finally a certain preimage & contacts it  Therefore, the intersections enable the everlasting transitions
[14]. This is called a contact bifurcation of the first kiftB],  between two distant regions corresponding to the original
which gives rise to a sudden change of multiple distant chaattractors.

otic attractors into one larger chaotic attractor. The simulta- Figure 1Zc) shows irregular intermittent behaviors in-
neous contacts between the attractors and the fractal basiluced by the attractor-merging crisis. A typical trajectory
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FIG. 12. Crisis-induced intermittency between two distant re-
gions after the attractor-merging whefa,e)=(1.682,1.9: (a FIG. 13. Dependence of the average lifetime on the parameter
phase plot{b) unstable manifolds oP; (c) time series. The linear fitting indicated by the dashed line yields a critical ex-

ponenty=1.46 in Eq.(16).
spends a long time in an original attractor region and occa-
sionally moves to the other region. The long lifetime is due A method to characterize a fractal basin boundary is to
to transient chaof20] related to the chaotic repellers in the investigate the uncertainty expongt]. For a fractal basin
originally attracting areas. The frequency of the transitionsboundary, the probability that several initial conditions with
becomes higher as surpasses the crisis parameter valye a § distance apart asymptotically converge to different attrac-
In other words, the average lifetim@0] in the transient tors is scaled withs as follows:
periods gradually decreases. Figure 13 shows dependence of
the average lifetime on the parametex, which is scaled as _
follows [12,31]: Pr(8) ~ &, 1n

T~ (AN, (16)  where the scaling exponent with 0<«<1 is called the
for \ close to\.. The scaling factory is called acritical ~ Uncertainty exponent. The probability (Br represents the
exponent12]. The scaling properties have been given forfraction that the destination of a trajectory is uncertain for a
two situations of boundary crises including a homoclinic tan-Perturbation ordered by. As & decreases, the uncertainty
gency and a heteroclinic tangend@2,31]. In both cases, the decreases but a more precise measurement of initial condi-
scaling properties are characterized by eigenvalues of a Jachons is needed to predict the final state. .
bian matrix at a saddle point. In our case, the mechanism of 10 compute the uncertainty exponent of the fractal E)asm
the crisis is different from these two situations. NeverthelessPoundary, we choose some values®in the range 10

. . . A . l . .y e -
the average lifetime is scaled with the parameter interval. = 9=10"". For each value o, an initial condition(x, o) is
a certainty point if all the final states of the four perturbed

initial conditions(xg* &,Yo+ 8) coincide with that of the non-
perturbed initial condition. Otherwise, it is regarded as an
The successive basin bifurcations are characterized byncertainty point. Using 8192 random initial conditions, we
variation of the dimension of the fractal basin boundary.obtain the fraction of uncertainty points féron a log-log
Self-similarity of the fractal basin boundary is clearly ob- scale as shown in Fig. 14. The uncertainty exponens
served in Fig. &) where the fractal structure does not dis- estimated asy~0.08 with a linear fitting whem\=1.62. It
appear no matter how greatly the phase plane is expanded.#s been proved that the fractal basin boundary has a capac-
fractal basin boundary is a matter of importance since iity dimensiond=2-a for an uncertainty exponeni [17].
gives rise to a fundamental difficulty in prediction of the  Figure 15 shows variation of the fractal dimension of the
asymptotic behavior of the system due to both the fractabasin boundary with the change of the parameteAs \
structure with fine-scale complexity and the inevitable smaliincreases, the linear fitting of the fraction(Brfirst succeeds
errors in the specification of initial conditions and systemat the genesis of the fractal basin boundary. After that, the
parameter$17,32. An illustrating example of this last idea, dimension roughly decreases through successive contacts be-
showing how the phase space of some prototypical Hamiltween the fractal basin boundary and the critical curvéhe
tonian maps was fractalized, and consequently the predictimension touches the bottom at the major change in the
ability of future states was lost, was recently shown in Refbasin structure where simply connected immediate basins
[33]. Similar ideas applied to Hamiltonians systems are disturn into multiply connected ones. The dimension increases
cussed in Refl.34]. A highly complicated basin structure can from the bottom with the development of the points intruding
be formed due to a fractal basin boundf?$,35 as well as  into the previously simply connected regions. Finally, the
a riddled basin[18,3§ and an intermingled basif25] in  linear fitting of the fraction R©) fails at the final crisis.
noninvertible maps. Figure 15 illustrates that variation of a dimension of a fractal

D. Fractal dimension
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FIG. 14. Scaling property of the fraction of uncertainty initial
points for§in a log-log scale. A linear fitting yields the uncertainty i
exponenta=0.08, where(\,€)=(1.62,1.9. | X

FIG. 16. Basin structure in the asymmetric syst€r) where
€)=(1.8,1.85 and 8=0.01. The immediate basin @&f is sim-
ply connected whereas that A is multiply connected.

basin boundary can be an informative factor characterizin%\
qualitative changes in the basin structure. ’

VI. DISCUSSION rameter values in the physical world. Thus, it is important to

We have investigated crisis-induced intermittency in anvestigate the robustness of the intermittent behaviors
system of two symmetrically coupled logistic maps. The in-against a slight parameter mismatch violating the symmetry

termittent behaviors arise through the attractor-merging crisig37_’38|' _Let us con5|_der a mOd'f'e_d scenario of basin bifur-
of two distant attractors that are mutually symmetric. ToaloNs in the following system with unbalance of the non-
study the mechanism of the crisis, we have elucidated thgneanty parameters:

topological changes of the attractors and the qualitative

changes of thei_r basins With va_lriation of system param_eter Xoep = (1= e)f}\l(xn) + E[f}\l(xn) + sz(yn)],

values. The main three basin bifurcations are the genesis of 2

the fractal basin boundary, the changes of the simply con- (18
nected immediate basins into the multiply connected ones, —(1-of L ¢ i

and the destruction of the basins with the merging of the Yo = (1= Ty, (o) 2[ A O0) + )],

attractors. The qualitative changes in the basin structure in-

cluding these major changes have been quantitatively chagvhereh,;=\+ 8 and\,=\-g. If the mismatch parametes
acterized by the variation of the dimension of the fractalis sufficiently small, then the symmetry of the original sys-
basin boundary. tem is slightly violated.

The model that we have studied is a symmetrically Due to the asymmetry of the system, the off-diagonal at-
coupled system. However, the exact symmetry between suliractors are not mutually symmetric. However, each attractor
systems does not hold owing to inevitable noise for the pahas a simply connected immediate basin similar to that as

shown in Fig. 8). When\ increases, the basin fractalization

2 - - - - - - occurs due to the same mechanism as in the symmetric case.
1.98 | T\\ . There remain only the two attractofg, and Az. The basin
1.96 | Genesis ™~ 1 structure is similar to Fig. @) after the basin fractalization.
194 L -, ] With further increase ok, one of the simply connected im-
ci92 | “\-\ . | mediate basins first changes into a multiply connected one as
° 19 ~, . shown in Fig. 16. The immediate basin 8§ is already
c 19r » %, Destruction - . . . . .
O . ool N | multiply connected, while that of\ is still simply con-
g ' ‘-\_‘. : nected. A similar change of the immediate basirgfneeds
186 1 -] further increase ok. Therefore, the attractdk, first disap-
1.84 1 © ] pears due to an interior crisis caused by a contact between
1.82 ¢ ch . . T. 1 Aq and the basin boundary. After the crisis, a trajectory with
anges of immediate basins L . .
1.8 : : ' : : : an initial condition near the original attractdg shows tran-
154 156 158 16 162 164 166 1.68

sient chaos and finally converges to the only attra&gr

The last event is the interior crisis 8k, which brings about
FIG. 15. Fractal dimension with change ofvheree=1.9. The @ sudden attractor widenirjd2]. Immediately after the final

variation of the dimension characterizes the genesis, the change®isis, intermittent transitions are observed because transient

and the destruction of the fractal basin boundary. chaos still remains in both originally attracting regions. Con-

A
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sequently, the crisis-induced intermittency is robust againstinerancy that is typically found in a wide class of such
the small parameter mismatch, though the scenario of basisystemd6].
bifurcations is slightly different.

The coupled systems that we have studied can be consid-
ered as very simple cases of globally coupled chaotic maps ACKNOWLEDGMENTS
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